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ABSTRACT 

With the rapid advances in deployable membrane and mesh antenna technologies, the feasibility of developing large, 
lightweight reflectors has greatly improved.  In order to achieve the required surface accuracy, precision surface control 
is needed on these lightweight reflectors. For this study, an analytical model is shown which combines a flexible Kapton 
reflector with Polyvinylidene fluoride (PVDF) actuators for surface control.  Surface errors are introduced that are 
similar to real world scenarios, and a least squares control algorithm is developed for surface control.  Experimental 
results on a 2.4 meter reflector show that while the analytical reflector model is generally correct, due to idiosyncrasies 
in the reflector it cannot be used for online control.  A new method called the En Mass Elimination algorithm is used to 
determine the optimal grouping of actuators when the number of actuators in the system exceeds the number of power 
supplies available.   
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1. INTRODUCTION 

With the rapid advances in deployable membrane and mesh antenna technologies [1], the feasibility of developing large, 
lightweight reflectors has greatly improved.  There are many benefits of using deployable membranes, such as reduced 
mass and stowage size thus allowing for a larger aperture, and a higher possible orbit.  However, a major shortcoming of 
deployable membrane reflectors is the difficulty in maintaining a sufficiently tight surface accuracy.   
 
The major problem is that in order to achieve high gain and low sidelobes, large deployable reflectors (5-35 meter 
diameter) operating at 14–35 GHz must keep a very tight surface tolerance: 0.54 mm (0.021 inches) at 14 GHz and 0.21 
mm (0.008 inches) at 35 GHz.  A surface tolerance of 0.21 mm is equivalent to the thickness of three sheets of paper.  
Studies have shown [2,3] that without any mechanisms to correct for mechanical and thermal distortion, a deployed 
reflector would nominally achieve a surface tolerance of 4.3 mm, which is 20 times the required surface accuracy. 
In order to achieve the needed surface accuracy, high-precision surface control is needed.  Past research has focused on a 
variety of control methods, such as using temperature gradients [4], boundary control [5,6], cable control [7-10], and 
domain control [11].  Domain control, where actuators are placed directly on the surface, has the ability to control more 
localized errors, but can require more actuators for control.  Many studies to date have assumed that each actuator can be 
controlled individually.   While ideally each actuator should be controlled by an individual power supply, sometimes it is 
realistically not feasible due to design, weight, or cost constraints.  There are many instances where the only solution is 
to group multiple actuators together and power each group with a single power supply.  For best performance, the 
grouping of actuators must be optimized.  Some methods for actuator grouping that have been used are genetic 
algorithms [12-13] , circulant matrix theory [14], a recursive algorithm based on the Linear Quadratic Regulator [15] and 
a controllability Grammian method for open loop grouping [16].  Each of these approaches require the user to define a 
stop condition, and while these approaches indeed have merits, they lack the guarantee of a global optimal solution or 
even the guarantee of an acceptable solution.  
 
The object of this research is to advance the state of the art and explore surface control and actuator grouping 
optimization utilizing a flexible Kapton reflector and Polyvinylidene fluoride (PVDF) actuators for surface control.   
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In this equation, {Yo} is a vector of sensor measurements representing the shape error due to the thermal loading, and 
{YE} is the vector of sensor measurements as a result of only the patch actuator inputs.   
  
The algorithm used to determine the optimal electric fields for a given patch configuration and loading/ shape error is the 
reflective Newton method [19].  The PVDF material can retain its piezoelectric properties only up to a certain value of 
the electric field.  Beyond this value, it gets depoled (loses its piezoelectric properties).  This threshold value determines 
the bounds on the electric field in the algorithm.  The objective function,  is minimized in the least-squares 
sense, keeping the electric fields within the selected bounds.  
 

3. MODEL VERIFICATION 

 
Throughout this study, two distinct test beds are used.  The first, a 2.4 meter diameter reflector, has been built to 
compare the analytical model developed above with an actual reflector.   This reflector was built by ManTech NeXolve 
Technologies, and the PVDF actuators were attached at the Jet Propulsion Lab (JPL).  The second test-bed used in this 
study is a 35 meter diameter model which conforms to desired attributes of the NASA NEXRAD reflector.  This test-bed 
is used to show the efficacy of the algorithms of this study.  The relevant geometric properties for both test-beds are 
given in Table 1 while the material properties, which are assumed to be the same for both test-beds, are listed in Table 2.   
 

 Table 1. Geometric properties of 2.4 meter test-bed and 35 meter test-bed. 

 
 

 

 

 

 

Table 2. Material properties for both 2.4 meter test-bed and 35 meter test-bed. 

 

 

 

 

 

 

 

 

 

 

 

 
 
For the 2.4 meter test-bed, a total of 168 rectangular PVDF actuators were attached to the surface of the reflector.  These 
actuators are 2 cm wide by 27 cm long and were arranged on the reflector surface in three rings, as shown in Figure 3a.  
There are two types of actuators on the surface.  All actuators on the left half of the reflector are normal PVDF actuators, 
while those on the right side of the reflector are ‘double’ actuators; one actuator is attached directly on top of another, 
which give twice the output of a single actuator.  The lines that extend out of the reflector surface area here are the 

Parameter Description 
2.4 Meter Test-

bed 
35 Meter Test-bed 

R Radius of Curvature 1.45 m 56 m 

a Planform Radius 1.2 m 17.5 m 

href Thickness 50 μm 50μm 

Parameter Description Value 
ρr Reflector Density 1420 kg/ m3 
Er Reflector Elastic Modulus 2.5 GPa 
υr Reflector Poisson’s Ratio 0.34 

αCTE 
Coefficient of Thermal 
Expansion 

0.4 x 10-6 K-1 

ρa Actuator Density 1780 kg/ m3 
Ea Actuator Elastic Modulus 2.27 GPa 
υa Actuator Poisson’s Ratio 0.225 
ha Actuator Thickness 65 μm 

d31 
d32 

Piezoelectric Constant 
Piezoelectric Constant 

15x10-12 m/Volt 
6x10-12 m/Volt 

Vmax Maximum Allowed Voltage 2000 V 
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Figure 7  Graphical result for 35 meter reflector, 100% coverage, given a uniform temperature shift, T0 = 40 K.  All 
displacements are in mm. 
 
 
The second case, Figure 8, illustrates the application of the control law to correct the shape error caused by a gradient 
temperature shift T of 40 K, while T0 is kept at 0 K.  The RMS error is reduced from 0.28 mm to 0.8 μm, a reduction of 
99.9%.   

 
Figure 8  Graphical result for 35 meter reflector, 100% coverage, given a gradient temperature shift, ∆T = 40 K.  All 
displacements are in mm. 
 
 
The third case is a combination of the first two cases.  A uniform temperature shift, T0, of 40 K is applied with a gradient 
temperature shift T of 40 K, as seen in Figure 9.  In this case, the maximum applied temperature is 80 K, where the two 
temperatures are added together.  The uncontrolled RMS error is 0.93 mm, while after the control the RMS error is 
reduced to 0.2 μm, or a reduction of 99.9%. 
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Figure 9  Graphical result for 35 meter reflector, 100% coverage, given a gradient temperature shift, ∆T = 40 K and a 
uniform temperature shift, T0 = 40 K.  All displacements are in mm.  
 
 
These results show that given full surface coverage, accurate control of the surface is possible using PVDF actuators.  
The previous results assume that we have sufficient power supplies to control each actuator individually.  While ideally 
each actuator should be controlled by an individual power supply, many times it is not realistically feasible due to 
design, weight, or cost constraints.  There are many instances where the only solution is to group multiple actuators 
together and power each group with a single power supply.  For best performance, the grouping of actuators must be 
optimized.   
 

5. EME ALGORITHM 

 
5.1 Explanation of EME Algorithm 

The En Masse Elimination (EME) algorithm has been shown to be effective at finding the global optimal grouping for 
actuators, without having to test every possible grouping, as an exhaustive search would require [20].  The basic premise 
of the EME method is that by temporarily relaxing the power supply constraint, the resultant objective function 
measurement (RMS error) is a lower bound for multiple possible actuator combinations, which can be used to eliminate 
large areas of the design space.  While the EME algorithm is still an exponential algorithm similar to the exhaustive 
search, large numbers of iterations can be eliminated without testing each possibility.  A flowchart of the EME process is 
given in Figure 10 and a step by step process of the method is given below.   
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